Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 4 de 4
1.
ACS Biomater Sci Eng ; 10(5): 3136-3147, 2024 May 13.
Article En | MEDLINE | ID: mdl-38663028

Treatment with immune checkpoint inhibitors (ICIs) has shown efficacy in some patients with Lynch syndrome-associated colon cancer, but some patients still do not benefit from it. In this study, we adopted a combination strategy of tumor vaccines and ICIs to maximize the benefits of immunotherapy. Here, we obtained tumor-antigen-containing cell lysate (TCL) by lysing MC38Mlh1 KD cells and prepared liposome nanoparticles (Lipo-PEG) with a typical spherical morphology by thin-film hydration. Anti-PD-L1 was coupled to the liposome surface by the amidation reaction. As observed, anti-PD-L1/TCL@Lipo-PEG was not significantly toxic to mouse intestinal epithelial cells (MODE-K) in the safe concentration range and did not cause hemolysis of mouse red blood cells. In addition, anti-PD-L1/TCL@Lipo-PEG reduced immune escape from colon cancer cells (MC38Mlh1 KD) by the anti-PD-L1 antibody, restored the killing function of CD8+ T cells, and targeted more tumor antigens to bone marrow-derived dendritic cells (BMDCs), which also expressed PD-L1, to stimulate BMDC antigen presentation. In syngeneic transplanted Lynch syndrome-associated colon cancer mice, the combination of anti-PD-L1 and TCL provided better cancer suppression than monoimmunotherapy, and the cancer suppression effect of anti-PD-L1/TCL@Lipo-PEG treatment was even better than that of the free drug. Meanwhile anti-PD-L1/TCL@Lipo-PEG enhanced the immunosuppressive tumor microenvironment. In vivo fluorescence imaging and H&E staining showed that the nanomedicine was mainly retained in the tumor site and had no significant toxic side effects on other major organs. The anti-PD-L1/TCL@Lipo-PEG prepared in this study has high efficacy and good biosafety in alleviating the progression of Lynch syndrome-associated colon cancer, and it is expected to be a therapeutic candidate for Lynch syndrome-associated colon cancer.


B7-H1 Antigen , Colonic Neoplasms , Colorectal Neoplasms, Hereditary Nonpolyposis , Liposomes , Animals , Colorectal Neoplasms, Hereditary Nonpolyposis/pathology , Colonic Neoplasms/pathology , Colonic Neoplasms/drug therapy , Mice , B7-H1 Antigen/metabolism , Nanomedicine , Cell Line, Tumor , Cancer Vaccines/therapeutic use , Cancer Vaccines/immunology , Humans , Mice, Inbred C57BL , Female , Dendritic Cells/immunology , Dendritic Cells/drug effects , Dendritic Cells/metabolism , Nanoparticles/chemistry , Nanoparticles/therapeutic use , Disease Progression , Polyethylene Glycols/chemistry , Polyethylene Glycols/therapeutic use , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Antigens, Neoplasm/immunology
2.
Redox Biol ; 71: 103094, 2024 May.
Article En | MEDLINE | ID: mdl-38479221

Low-molecular-weight (LMW) thiols are produced in all living cells in different forms and concentrations. Glutathione (GSH), coenzyme A (CoA), bacillithiol (BSH), mycothiol (MSH), ergothioneine (ET) and trypanothione T(SH)2 are the main LMW thiols in eukaryotes and prokaryotes. LMW thiols serve as electron donors for thiol-dependent enzymes in redox-mediated metabolic and signaling processes, protect cellular macromolecules from oxidative and xenobiotic stress, and participate in the reduction of oxidative modifications. The level and function of LMW thiols, their oxidized disulfides and mixed disulfide conjugates in cells and tissues is tightly controlled by dedicated oxidoreductases, such as peroxiredoxins, glutaredoxins, disulfide reductases and LMW thiol transferases. This review provides the first summary of the current knowledge of structural and functional diversity of transferases for LMW thiols, including GSH, BSH, MSH and T(SH)2. Their role in maintaining redox homeostasis in single-cell and multicellular organisms is discussed, focusing in particular on the conjugation of specific thiols to exogenous and endogenous electrophiles, or oxidized protein substrates. Advances in the development of new research tools, analytical methodologies, and genetic models for the analysis of known LMW thiol transferases will expand our knowledge and understanding of their function in cell growth and survival under oxidative stress, nutrient deprivation, and during the detoxification of xenobiotics and harmful metabolites. The antioxidant function of CoA has been recently discovered and the breakthrough in defining the identity and functional characteristics of CoA S-transferase(s) is soon expected.


Antioxidants , Sulfhydryl Compounds , Sulfhydryl Compounds/metabolism , Antioxidants/metabolism , Transferases/metabolism , Oxidation-Reduction , Glutathione/metabolism , Oxidoreductases/metabolism , Disulfides/chemistry
3.
World J Surg Oncol ; 21(1): 361, 2023 Nov 22.
Article En | MEDLINE | ID: mdl-37990273

BACKGROUND: The controversy surrounding Roux-en-Y (R-Y) and Billroth II with Braun (BII + B) reconstruction as an anti-bile reflux procedure after distal gastrectomy has persisted. Recent studies have demonstrated their efficacy, but the long-term outcomes and postoperative quality of life (QoL) among patients have yet to be evaluated. Therefore, we compared the short-term and long-term outcomes of the two procedures as well as QoL. METHODS: The clinical data of 151 patients who underwent total laparoscopic distal gastrectomy (TLDG) at the Gastrointestinal Surgery Department of the Second Hospital of Fujian Medical University from January 2016 to December 2019 were retrospectively analyzed. Of these, 57 cases with Roux-en-Y procedure (R-Y group) and 94 cases with Billroth II with Braun procedure were included (BII + B group). Operative and postoperative conditions, early and late complications, endoscopic outcomes at year 1 and year 3 after surgery, nutritional indicators, and quality of life scores at year 3 postoperatively were compared between the two groups. RESULTS: The R-Y group recorded a significantly longer operative time (194.65 ± 21.52 vs. 183.88 ± 18.02 min) and anastomotic time (36.96 ± 2.43 vs. 27.97 ± 3.74 min) compared to the BII + B group (p < 0.05). However, no other significant differences were observed in terms of perioperative variables, including blood loss (p > 0.05). Both groups showed comparable rates of early and late complications. Endoscopic findings indicated similar food residuals at years 1 and 3 post-surgery for both groups. The R-Y group had a lower occurrence of residual gastritis and bile reflux at year 1 and year 3 after surgery, with a statistically significant difference (p < 0.001). Reflux esophagitis was not significantly different between the R-Y and BII + B groups in year 1 after surgery (p = 0.820), but the R-Y group had a lower incidence than the BII + B group in year 3 after surgery (p = 0.023). Nutritional outcomes at 3 years after surgery did not differ significantly between the two groups (p > 0.05). Quality of life scores measured by the QLQ-C30 scale were not significantly different between the two groups. However, on the QLQ-STO22 scale, the reflux score was significantly lower in the R-Y group than in the BII + B group (0 [0, 0] vs. 5.56 [0, 11.11]) (p = 0.003). The rest of the scores were not significantly different (p > 0.05). CONCLUSION: Both R-Y and B II + B reconstructions are equally safe and efficient for TLDG. Nevertheless, the R-Y reconstruction reduces the incidence of residual gastritis, bile reflux, and reflux esophagitis, as well as postoperative reflux symptoms, and provides a better quality of life for patients. R-Y reconstruction is superior to BII + B reconstruction for TLDG.


Bile Reflux , Esophagitis, Peptic , Gastritis , Laparoscopy , Stomach Neoplasms , Humans , Retrospective Studies , Quality of Life , Bile Reflux/epidemiology , Bile Reflux/etiology , Bile Reflux/surgery , Stomach Neoplasms/surgery , Stomach Neoplasms/complications , Gastroenterostomy/adverse effects , Gastroenterostomy/methods , Gastrectomy/adverse effects , Gastrectomy/methods , Anastomosis, Roux-en-Y/adverse effects , Anastomosis, Roux-en-Y/methods , Laparoscopy/adverse effects , Laparoscopy/methods , Esophagitis, Peptic/epidemiology , Esophagitis, Peptic/etiology , Esophagitis, Peptic/surgery , Treatment Outcome , Postoperative Complications/epidemiology
4.
J Org Chem ; 85(2): 1087-1096, 2020 01 17.
Article En | MEDLINE | ID: mdl-31845808

Cyanoformamides are prevalent as versatile building blocks for accessing synthetically useful intermediates and biologically active compounds. The development of a milder, simpler, and more efficient approach to cyanoformamides is nontrivial. Herein, we demonstrate the effectiveness of 4,5-dioxo-imidazolinium cation activation for transforming 1-acyl-1-carbamoyl oximes to cyanoformamides. By making use of the readily available and highly modifiable dichloroimidazolidinediones (DCIDs), this novel method of activation offers reactivity remarkably greater than that of other reported protocols, exhibits a high functional group compatibility with mild conditions, and could be scaled up easily. More than 30 examples are demonstrated with good to excellent yields in short reaction times. This research not only provides a mild and efficient alternative approach to assembling a portfolio of cyanoformamides but also extends the dichloroimidazolidinedione-mediated chemistry to encompass the C-C bond cleavage reaction.

...